首页

    编辑部

    期刊简介

    《纳米人》

    征稿启事

    联系我们

 
 
《纳米人》>第02期>新闻速递

要闻
发表时间:2013-10-22
 
  1. 我院王祎龙博士和美国辛辛那提大学时东陆教授共同指导博士生汪峰,与美国辛辛那提大学药学院和密西根大学的同行紧密合作,研制出一种新型表面双功能化的非对称纳米复合微球,它可以将抗癌药物输送至癌细胞内部并能可控释放,对正常组织的毒副作用大大降低,从而达到局部治疗的目的。而且具有超顺磁性,可应用于核磁共振成像以及磁热疗法。这项研究成果发表在2013年《Advanced Materials》上,在设计新型纳米结构与生物医学应用领域开拓了一个崭新的方向。
  2. 我院特聘教授文学军博士的“系列医学纳米材料及组织再生修复产品”项目,在3月28日落幕的首届“千人计划”创业大赛决赛中荣获一等奖,获得 30万元创业奖励及1000万元创业投资。
  3. 我院黄佳教授与美国马里兰大学最近联合研发的纳米纸晶体管,向纸制电子产品迈出了重要一步。
  4. 我院隆重举办五周年院庆
  5. 主要学术报告。
 

1. 我院王祎龙博士和美国辛辛那提大学时东陆教授共同指导博士生汪峰,与美国辛辛那提大学药学院和密西根大学的同行紧密合作,研制出一种新型表面双功能化的非对称纳米复合微球,它可以将抗癌药物输送至癌细胞内部并能可控释放,对正常组织的毒副作用大大降低,从而达到局部治疗的目的。而且具有超顺磁性,可应用于核磁共振成像以及磁热疗法。这项研究成果发表在2013年《Advanced Materials》上,在设计新型纳米结构与生物医学应用领域开拓了一个崭新的方向。

国际合作促成基于Janus结构的多功能纳米载体设计新思路的实现

转载自:2013年05月30日 MaterialsViews编辑部

随着纳米技术的飞速发展,其在医药领域的应用也日渐广泛。其中一个重要的趋势是将多种功能整合于同一个纳米载体中,使之能同时实现靶向,示踪,磁热疗,载药和可控释药。传统纳米颗粒的一个不足之处在于,他们大多具有对称结构,只具备单一表面可用于改性。当多种组分同时要被修饰到表面时,组分之间的互相干扰会使得多功能的实现十分困难。
近期,同济大学生物医学工程与纳米科学研究院的王祎龙博士、时东陆教授共同指导美国辛辛那提大学博士生汪峰,与美国辛辛那提大学药学院和密西根大学的同行紧密合作,研制出一种新型表面双功能化的非对称纳米复合微球。不同于以往的核壳形式,这种复合微球以约200nm的聚苯乙烯为核,表面覆盖厚度约100nm,内嵌四氧化三铁纳米颗粒的二氧化硅半壳。聚苯乙烯表面由引发剂引入了羧基,二氧化硅表面则分布硅羟基。这种新颖的双功能化结构为表面选择性偶合生物分子提供了一个独特的方法。



经过分步修饰,作为靶向基团的叶酸被联接于聚苯乙烯表面,化疗药物阿霉素则通过对pH敏感的腙键偶联在二氧化硅表面。负载药物的复合微球通过叶酸受体介导内吞进入核内体。核内体的微酸环境(pH4.5-6.5)使腙键水解断裂,药物得以释放并进入细胞核。这种非对称复合微球可以将抗癌药物输送至癌细胞内部并且可控地释放,以杀死癌细胞,从而达到局部治疗的目的。在此过程中对正常组织的毒副作用大大降低,效果远优于全身化疗。此外,复合微球具有超顺磁性,可应用于核磁共振成像以及磁热疗法。这项研究成果发表在2013年《Advanced Materials》上,并在设计新型纳米结构与生物医学应用领域开拓了一个崭新的方向。

http://www.materialsviewschina.com/2013/05/janus-structure-based-on-international-cooperation-to-promote-multifunctional-nanocarriers-designed-to-achieve-new-ideas/


Top

2. 我院特聘教授文学军博士的“系列医学纳米材料及组织再生修复产品”项目,在3月28日落幕的首届“千人计划”创业大赛决赛中荣获一等奖,获得 30万元创业奖励及1000万元创业投资。

近似天然椎间盘的人造仿生椎间盘、与人体动脉力学性能高度近似的人造血管、软骨缺损修复及再生产品、具有抑菌效果的医用导管……同济大学特聘讲座教授文学军博士的“系列医学纳米材料及组织再生修复产品”项目,在3月28日落幕的首届“千人计划”创业大赛决赛中荣获一等奖,获得 30万元创业奖励及1000万元创业投资。
“千人计划”创业大赛由“千人计划创投中心”、“千人计划专家联谊会”联合举办,旨在吸引海外高层次人才回国创业。大赛自去年4月启动,经过初赛、复赛和决赛激烈角逐,由来自投资界和专业领域近70位专家评委严格筛选,最终文学军博士从近400个参赛项目中胜出。
“随着社会老龄化的加剧,针对老年人相关医学产品的需求将不断上升。而在这些老年人疾病中,发病率最高的就是心脑血管疾病、老年性骨折、动脉血管硬化等各类疾病。”文教授介绍说,“我们团队研发的塑化蛋白纳米涂层医用导管、高仿真三维打印椎间盘、高仿真人造血管、软骨缺损修复、中枢神经修复再生等一系列技术产品,可广泛应用于‘抑菌’、‘人造椎间盘’、‘人造血管移植’、‘软骨再生’、‘中枢神经损伤’等多个领域,多项技术和产品达到世界领先水平。”
据介绍,近5年来,文学军教授领衔的研发团队,开发了数十项新技术和专利,其中多项科研成果处于世界领先水平。其中,“高仿真三维打印椎间盘”,曾在2011年3月美国麻省理工学院的Technology Review述评中,被认为是目前世界上和天然椎间盘最为近似的人造仿生椎间盘。针对“中枢神经损伤修复、再生技术”这一被视为当前国际上神经再生领域的重大医学难题,研究团队基于大鼠动物模型实验,分别成功实现了脑损伤动物模型知觉、急性脊髓损伤动物模型瘫痪后肢运动能力的恢复。该技术2009年一经问世,即受到了国际学界和主流媒体的热切关注。
文教授表示,在创业资金支持下,研究团队希望将所开发的系列医用技术产品,尽快应用于临床,让更多的患者早日受益,由此也提升我国高端医疗器械耗材领域的水平。
文学军教授是生物医学工程领域的资深科学家,现任同济大学医学院生物医学工程与纳米科学研究院的特聘教授。2012年因其在生物医学工程领域的杰出工作和突出贡献,当选世界上该领域声誉最高的学术组织美国医学与生物工程院的院士(Fellow of American Institute for Medical and Biological Engineering, AIMBE)。


Top

3. 我院黄佳教授与美国马里兰大学最近联合研发的纳米纸晶体管,向纸制电子产品迈出了重要一步。

同济教授研究成果向“纸质电子产品”迈出重要一步:以全透明、可弯曲、可降解的“纳米纸”为衬底,成功制备出同样透明、可弯曲、可降解的半导体器件。 近日,国家“青年千人计划”入选者、同济大学生物医学工程与纳米科学研究院与材料科学与工程学院双聘教授黄佳博士,美国马里兰大学材料科学与工程系Hu Liangbing教授等共同完成的研究论文《全透明可弯曲纳米纸晶体管》(“Highly Transparent and Flexible Nanopaper Transistors”),在线发表于由美国化学会(ACS)主办的、国际纳米科学技术领域权威期刊《ACS Nano》杂志。该刊物最新公布的影响因子为11.421。



“透明化、可弯曲,是电子产品未来发展的两个重要方向。我们这一研究成果最大的创新点,是将全透明、可弯曲、可降解这几大功能和特性同时整合在一个器件上。”黄佳教授介绍说,如果将电子产品做在塑料上,虽然可弯曲也透明,但无法降解,最终会产生出大量的电子垃圾;而要将电子产品做在纸张上,则面临不少困难,对相关技术和制备工艺提出了挑战。
“普通纸张纤维粗,透光但不透明;而且普通纸张的表面粗糙,凹凸不平,要在它上面制备半导体层,不仅很难形成完整、连续、均匀的膜,而且还容易导致晶体管漏电。”黄佳教授介绍说,为此,研究团队就将普通造纸所用的木浆纤维,经特殊处理使其尺度达到纳米量级。如此制作出来的“纳米纸”可有效减少对光的吸收和散射,不仅变得透明,而且其表面有如塑料一般光滑,这为接下来在它上面制备性能优良的晶体管奠定了重要基础。
以这一新型“纳米纸”为衬底材料,研究团队在它上面一层层制备出由碳纳米管、绝缘层、有机半导体组成的透明度高达84%、可弯曲的晶体管。实际的性能测试表明,即便将整个器件以3.5毫米的半径弯曲起来时,它上面的透明晶体管仍能保持优良的工作性能。
“‘可溶性’是有机半导体材料的一大优点,这也使得通过全打印方式来制备器件成为可能,这样一来将大大降低电子产品的成本。”黄佳教授说,“或许在不久的将来,人们就能利用可再生资源印刷出透明可弯曲的电子设备,类似于电影《哈利波特》中‘魔法报纸’的纸质电子产品就会出现。从理论上说,这将是迈向环保纸质电子产品的第一步。”
“‘纳米纸’衬底及透明有机半导体研发过程中的这些技术及制备工艺,并非仅局限于绿色纸质电子产品领域,在柔性电子器件等其它领域也有其用武之地。”黄佳教授补充说。


Top

4. 我院隆重举办五周年院庆



Top

5. 主要学术报告:

1) 2013年2月26日,王锋博士莅临我院以“Interdisciplinary studies of DNA-protein interaction using single molecule fluorescence and nano-fabrication”为主题作了精彩的报告,报告摘要如下:
Abstract: Single molecule study and nano-fabrication are two emerging fields in recent years. They have brought us numerous discoveries and applications. We integrate these two techniques and invented the “DNA curtain” and its variations. Using “DNA curtain” and single molecule fluorescence, I have studied the promoter search mechanism of RNA polymerase and molecular pathway of DNA mismatch. I found that promoter search by RNA polymerase is dominated by 3D diffusion and protein concentration plays a direct role in indicating the search pathway. And I also discovered that the diffusion and function of mismatch proteins are regulated along the mismatch pathway. In the future, I propose an interagrated study of genomics and epigenomics based on nano-fabrication with the goal to develop a high-throughput, high-resolution and inexpensive technology to detect DNA structure variation and methylation simultaneously.
Biography:王锋博士,Associate Research Scientist,Department of Biochemistry and Molecular Biophysics,Columbia University,USA.

 

2) 2013年3月26日,刘毅博士莅临我院以“Chemistry Syntheses of Mono-disperse Nanocrystals and Their Applications in Catalysis and Magnetic Materials”为主题作了精彩的报告,报告摘要如下:
Abstract: Mono-disperse nanocrystals (NCs) currently attract intense research interests because of the novel properties induced by their size, shape, composition and structure. Recent advances in high temperature organic phase synthesis have led to various high quality NCs. I have worked on syntheses of the mono-disperse NCs and investigated their applications in fields of catalysis and magnetic materials. In this talk, I will focus on my experience in developing novel and facile syntheses for various NCs. I will first introduce the principal guideline for a successful synthesis and the general experimental set-ups. Some factors, such as synthesis routes, reagents, and surfactants et al, are found to play key roles in the synthesis. A few representative NCs syntheses will be discussed in detail to illustrate how the controls over composition, size, shape, and surface structure were achieved through tuning the synthesis conditions. Syntheses of PdxPty nanoparticles (NPs), Pt3Sn NPs, Fe3BO5 nanorods (NRs), Co NRs, Pd NPs et al will be presented as examples. Along with the syntheses, I will talk about their applications as fuel cell catalysts and magnetic materials.
Biography:Yi Liu was born in Jiangsu, China in year 1983. She received a Bachelor of Science degree in Chemistry from Nanjing University in 2004; then a Master of Science in Polymer Technology from Eastern Michigan University in 2007. Between 2007-2011, she did Ph.D. research under the guideline of Professor Shouheng Sun at Brown University. After graduation, she did one year Post-Doctoral research at Argonne Nation Laboratory. Her research focuses were syntheses of monodisperse nanoparticles for applications in catalysis and high density magnetic energy storage.

 
3) 2013年5月20日,医学院生物医学论坛第十九讲,马俊教授受时院长邀请莅临同济大学医学院作了主题为“Morphogen gradients and embryonic patterning: how do cells know where they are and what they will become?”的报告,报告摘要如下:
Abstract: Morphogens are molecules that form concentration gradients in a developing embryo or tissue. The morphogen concept, based originally on theoretical studies, is a cornerstone of developmental biology. It is thought that morphogen gradients can give a cell in a developing field a sense of where they are relative to others. But precisely how gradients are formed to encode the positional information in the first place and how cells subsequently decode this information remains poorly understood. Only recent quantitative, experimental studies have begun to reveal mechanistic insight into this fundamental question in developmental biology. I will present our recent studies of the Drosophila morphogen gradient of Bicoid, which is required for the formation of the head in the early embryo. I will discuss issues relevant to our understanding of how the Bicoid gradient is actually formed and how individual copies of Bicoid target genes inside the nucleus in the embryo read or sense the Bicoid concentration to decode the positional information. I will also discuss the issue of developmental robustness by focusing on the question of how a large embryo and a small embryos can develop their head structures in a manner that is proportional to the overall size of the embryo.
Biography:Jun Ma, Professor of Pediatrics. Jun Ma received his BS in Biology from Peking University and his PhD in Biochemistry and Molecular Biology from Harvard University. He was a Junior Fellow at the Harvard Society of Fellows. He is currently professor of Pediatrics at the Divisions of Biomedical informatics and Developmental Biology of Cincinnati Children’s Research Foundation. His current work focuses on the molecular mechanisms of embryonic patterning. He has numerous publications in journals such as Cell and Nature (and their family series), PNAS and Development.
 
4) 2013年7月29日,肖泽宇博士来我院就“Journey to Tumor Targeting: Engineering of Nucleic Acid-Functionalized Nanoparticals for Cancer Therapy”作了精彩的报告,报告摘要如下:
Abstract: The development of targeted nanoparticles for cancer therapy has received substantial attention in recent years, while two major challenges remain. The first challenge is how to discriminate between the expression of antigens on cancer cells and normal cells, and subsequently deliver a therapeutic payload into the cancer cells. The second challenge is how to assemble targeted nanoparticles in a simple and reproducible way.My research has focused on using nucleic acid molecules to address these two challenges. In the first section of my talk, I will tell the story of using nucleic acids as targeting molecules to direct the internalization of therapeutic nanoparticles. Specifically, I designed a “cell-uptake selection” strategy to isolate a group of novel cancer-cell specific internalizing aptamers for nanoparticle-based cancer therapy and for the cancer biomarker discovery. In the second section, I will talk about using nucleic acids as building blocks to assemble targeted nanoparticles. Specifically, I designed a targeted, DNA-assembled gold nanoparticle platform, which can respond to near infrared light and release chemotherapeutics for the combinational thermo-chemo therapy.
Biography:Dr. Zeyu Xiao, MIT-Harvard Center of Cancer Nanotechnology Excellence, MIT, USA.
 
5) 2013年9月4日,谢晋博士莅临我院就“Engineering Nanoparticles for Tumor Imaging and Therapy”作了精彩的报告,报告摘要如下:
Abstract: Our research focuses on the development and evaluation of metal-, polymer- or protein-based nanoparticles applicable in an imaging and/or therapeutic context. The idea is to conceptualize the nanoparticles not as merely tiny aggregates of molecules but rather as platforms with large surface-to-volume ratios. By harnessing the well-developed surface chemistry, one can load a wide range of functionalities onto the particle surface. In this talk, I will focus on two technologies that are being developed in our lab. One is ferritin-based drug delivery carriers. Ferritin is a major iron storage protein found in human and most living organisms. We previously constructed RGD-modified ferritin nanoparticles and confirmed their good tumor selectivity both in vitro and in vivo. Very recently, we found that doxorubicin could be encapsulated into RGD-ferritin nanoparticles at high rate (up to 70 wt%) and delivered to tumors for targeted therapy. The second story is an optical imaging probe made of Cr doped LiGaO3 (LGO:Cr). LGO:Cr can be charged with UV light and then emit in the dark in the near-infrared (NIR) spectrum window for duration of hours. Since LGO does not require concurrent excitation to produce optical signals, the autofluorescence issue that has long been impeding fluorescence imaging is avoided. Indeed, our preliminary data showed a high signal-to-noise ratio, a deep tissue penetration depth, and great sensitivity with LGO-labeled cells or molecules.
Biography:Dr. Xie received B.S. in chemistry in 2003 from Nanjing University, China. He came to the U.S. in 2004, at which time he joined a Ph.D. program in the Department of Chemistry at Brown University under the supervision of Professor Shouheng Sun. After obtaining his Ph.D. in chemistry in 2008, Dr. Xie joined Dr. Xiaoyuan Chen’s group in the Molecular Imaging Program at Stanford (MIPS), and in the summer of 2009, he moved with Prof. Chen to the National Institute of Biomedical Imaging and Bioengineering (NIBIB). Dr. Xie joined the faculty of University of Georgia (UGA) in 2011, and has since been an assistant professor at the UGA Department of Chemistry.
 
6) 2013年9月26日,李丽博士来我院以“Tailoring nanostructures of metal oxide materials for various applications”为题作了精彩的报告,报告摘要如下:
Abstract: Metal oxides have widespread usage across many fields, including catalysis, energy storage and conversion, and biomedicine. Design and control of the architecture of metal oxide materials on the nanoscale have attracted great interest in recent years because of the unusual mechanical, optical and electrical properties arising from confining the dimensions of such materials. In this talk, I will present three approaches, including aerosol spray pyrolysis, sol-gel and nanocasting, for tailoring nanostructures of a variety of metal oxide materials, such as titanium oxide, tungsten oxide and vanadium oxide. I will also discuss the structure-property relation of the resultant nanomaterials and demonstrate their improved performances in given applications. In addition, I will present how a simplenano-junction geometry composed of metal oxide nanoparticles and flat metal film can be employed as a convenient and sensitive surface-enhanced Raman scattering sensor, allowing direct tracking and understanding of application-specific transformations at the interface.
Biography:李丽,博士, University of Southampton, UK.
 

Top
   
  首页  <<上一页  下一页>>   尾页    Go    
 
The Institute for Biomedical Engineering & Nano Science (iNANO)
Tongji University, 67 Chifeng Road, Shanghai, 200092, China
Tel: +86-021-65988029    Email: inano@tongji.edu.cn
Copyright 2009 Tongji University. All rights reserved.